INTEGRATION

1 a Find $\int(2 x+1) d x$.
b Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x+1$ and that $y=5$ when $x=1$, find an expression for y in terms of x.

2 Use the given boundary conditions to find an expression for y in each case.
a $\frac{\mathrm{d} y}{\mathrm{~d} x}=3-6 x, \quad y=1$ at $x=2$
b $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-x, \quad y=41$ at $x=4$
c $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}+4 x+1, \quad y=4$ at $x=-3$
d $\frac{\mathrm{d} y}{\mathrm{~d} x}=7-5 x-x^{3}, \quad y=0$ at $x=2$
e $\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x-\frac{2}{x^{2}}, \quad y=-1$ at $x=\frac{1}{2}$
f $\frac{\mathrm{d} y}{\mathrm{~d} x}=3-\sqrt{x}, \quad y=8$ at $x=4$

3 The curve $y=\mathrm{f}(x)$ passes through the point $(3,5)$.
Given that $\mathrm{f}^{\prime}(x)=3+2 x-x^{2}$, find an expression for $\mathrm{f}(x)$.
4 Given that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=10 x^{\frac{3}{2}}-2 x^{-\frac{1}{2}}
$$

and that $y=7$ when $x=0$, find the value of y when $x=4$.
5 The curve $y=\mathrm{f}(x)$ passes through the point ($-1,4$). Given that $\mathrm{f}^{\prime}(x)=2 x^{3}-x-8$,
a find an expression for $\mathrm{f}(x)$,
b find an equation of the tangent to the curve at the point on the curve with x-coordinate 2 .
6 The curve $y=\mathrm{f}(x)$ passes through the origin.
Given that $\mathrm{f}^{\prime}(x)=3 x^{2}-8 x-5$, find the coordinates of the other points where the curve crosses the x-axis.

7 Given that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x+\frac{2}{x^{2}}
$$

a find an expression for y in terms of x.
Given also that $y=8$ when $x=2$,
b find the value of y when $x=\frac{1}{2}$.
8 The curve C with equation $y=\mathrm{f}(x)$ is such that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}+k x
$$

where k is a constant.
Given that C passes through the points $(1,6)$ and $(2,1)$,
a find the value of k,
b find an equation of the curve.

